

22nd National Award for Excellence in Energy Management 2021 Techno Campus Office (TCO) - Chennai

August 2021

Agenda

- 1. Company Profile
- 2. ENCON Projects with and without investment
- 3. ENCON efforts for the past 3 years
- 4. Total Employee Involvement Programs
- 5. Monitoring, Reporting and Implementation Methodologies
- 6. Way Forward and Summary

Cognizant Overview

Cognizant is a multinational corporation that provides IT services, including digital, technology, consulting, and operations services. It is headquartered in Teaneck, New Jersey, United States.

#185 On 2021 Fortune 500 Fortune	#533 On Forbes Global 2000 for 2020 Forbes	#483 On Forbes The Best Employers for Diversity 2019 Forbes
12 Years One of Fortune's Most Admired Companies Fortune	#63 On Forbes Top 100 Digital Companies for 2019 Forbes	#19 On Forbes America's Best Employers 2020 Forbes
Cognizant is included in the NASDAQ-100 and the S&P 500 indices. Cognizant had a period of fast growth during the 2000s	159+ delivery and operations centers globally and spread across 39 countries	The company has more than 291,700 employees globally, of which, 100,000 are women employees.
Total global footprint of 24 million+ built up area, in which 13.6 million SFT is of own Facility	Majority of these operations are in hot and humid climate and operates on 24X7 basis	More than 80% of the space is air-conditioned

Facility Overview Coonizant 560000 Sq. feet **Total Built-up area** Phase I - 1,460 TR **HVAC** Phase II - 750 TR Total area of 14 Acres Facility DG - Phase I - 5500 kVA DG Power - Phase II - 3030 kVA Backup **Present Head** 4,350 FTE & 685 UPS Phase I & II - 900 kVA Count CWR (BAU) Phase 1 - 150KL STP **Seating Capacity** 5610 Phase 2 - 148KL **EB** Sanctioned Ph I - 3,500kVA Demand Ph II - 1,500kVA Fire Phase 1 - 550KL Phase 2 - 400KL **Sumps** SDB1 (G+3) SDB2 (G+6) Software Block Phase 1 - 15KL SDB3 (G+3) **HSD** Yards Phase 2 - 55 KL Academy (G+1)

Energy Consumption Overview- 2018 to 2020

Source Wise Consumption (%) Comparison 2020

5 © 2021 Cognizant

Monthly Energy Performance Index (EPI) - 2018 to 2020

0.76 1.77 2018 2019 2020

EPI Comparison in 2018 to 2020

(kWh / Month / Sq. ft)

EPI Comparison in 2018 to 2020 (kWh / Annum / Sq.M)

Specific Energy Consumption Overview - 2018 to 2020

Specific Energy Consumption Trend Analysis - 2018 to 2020

Comparison of SEC with Internal & National Benchmark

BEE - National Benchmark					
		EPI in kWh/Sq	. M. / Year		
Star Rating	Warm and Humid Composite Hot and Dry				
1 Star	200-175 190-165 180-155				
2 Star	175-150	165-140	155-130		
3 Star	150-125	140-115	130-105		
4 Star	125-100	115-90	105-80		
5 Star	Below 100	Below 90	Below 80		

Internal Benchmark

List of Project Planned in 2021

Planned Initiatives	Energy Savings (kWh)	Cost Saving (₹)	Investment (₹)	ROI
SDB-3 Chiller Retrofit Task	8,27,400	66,19,200	285,00,000	52
SDB-3 AHU EC Fan Replacement (conventional AHU motor- 11 KW, EC fan AHU - 3.3 KW)	7,76,160	62,09,280	151,50,000	29
Chiller Header Line Integration between SDB-1 & SDB-2	2,57,184	20,57,472	52,80,000	31
MD Reduction 0f 1000 kVA (3500 KVA to 2500 kVA) planned in Phase-1	Nil	31,17,267	8,30,565	3
Total	18,60,744	180,03,219	497,60,565	33

10

Energy Saving Projects Implemented Summary in 2018 to 2020

Energy Saving Projects Implemented in 2018 to 2020

12 © 2021 Cognizant

Energy Saving Projects Implemented in 2018 to 2020

Utility wise reduction -2018 to 2019 (BAU)

Innovative Project - Peripheral Area Light Fixture Pole Height Modification

Problem statement

- The peripheral area light poles is 15 meters, creating difficulty for inhouse team to conduct maintenance activities
- Maintaining the desired Lux level is a challenge
- Since existing fixture is 250W MHL, there is issue of delayed start/pick up of glowing incase of power change over

Implementation

- Height of the pole was reduced to optimum level (12 meters)
- Conventional 250W MHL light fittings are replaced by 100WLED

Benefits

- Improved the lux level as per the standard (from 30 to 60 lux)
- Easy to maintain the pole as the height is reduced

Pole Height is **15 Meters** Pole Height is **12 Meters**

Innovative Project - Peripheral Area Light Fixture Pole Height Modification

Execution of Innovation

Before Activity (Lux)

After Activity Lux

Innovative Project - Peripheral Area Light Fixture Pole Height Modification

Backup Calculation		
Existing Fixture Wattage	-	250W MHL
Total Fixture Quantity	-	20 Nos
Total Power Consumption	-	5.5 kW x 12 Hours/Day - 66 kWh/Day
New LED Light fixture wattage	-	100 W
Total Power Consumption	-	2 kW x 12 Hours/Day - 24 kWh/Day
Total Energy Consumption Reduction	n -	42 kWh/Day
Annual Energy Savings	-	15330 kWh/annum
Energy Cost	-	₹ 10/kWh
Annual Cost Savings	-	₹ 153300
Investment for LED Fixture Replacen	nent -	₹ 160000/-
Light Pole Modification Expenditures	, –	₹ 173264/-
Total Expenditure	-	₹ 333264/-
Payback Period	-	26 Months

Utilization of Renewable Energy Sources - 2018-2020

Technology (Electrical)	Type of Energy	Onsite/Offsite	Installed Capacity (MW)	Wind Energy consumption (million kWh)	% of Overall Wind Energy
Electrical	Wind	Offsite	256.85	12.95	48%

17 © 2021 Cognizant

Utilization of Renewable Energy Sources – FY 2018-2021

Year	Installed Capacity (MW)	Total Wind Energy Contracted Quantum (Lacs kWh)	Actual Supplied Wind Energy Quantum (Lacs kWh)	TCO Consumption (Lacs kWh)	Allocation contribution (%)
2018-19	256.85	525	511	52.4	3.64%
2019-20	256.85	525	509	29.03	3.15%
2020-21	256.85	525	379	34.81	2.11%

- In FY 2018-19 additional quantum of 200 Lacs kWh purchased with an investment of INR.200 Lacs
- RPO is complied in FY 2017-18 as Solar 5% and Non-Solar 9%
 - Solar REC purchased 356 No's
 - Non-Solar REC purchased 641 No's
- Allocation contribution reduction for FY 2018-21
 - Tariff Industrial with Tax (INR.6.35/kWh)
 - Less wind generation during peak seasonal months

Waste Utilization and Management

Cognizant choose to refuse 'Single-use plastics" irrespective of thickness form July 13, 2018

SI No	Type of Waste Generated	Disposal Method	Action Taken for Reduction of Waste
1	Hazardous Waste	Used and waste oil disposed to TNPCB authorized recycler	Battery waste – Extension of battery warranty (3 to 3.5 years)
2	Non-Hazardous Waste	Carton & paper waste disposed to authorized recycler Ms.ITC ltd & got 10 reams	Paper waste – 1) Limitation of printer access 2) E-Fit tool implemented and manual Check list optimized 3) Paper cups usages eliminated 100%
3	E Waste	Disposed to TNPCB authorized recycler	E –Waste – CFL to LED (Lifetime enhancement)

GHG Inventorisation - 2018 To 2020

Indoor Air Quality (BAU)

Test Parameters	Units	Result	Permissible limit	Remarks
Carbon Dioxide (CO2)	Mg/m3	839	1800	1. Testing through NABL Laboratory
Total Fungal Count	Cfu/m3	3	500	 Frequency of sampling is quarterly once for workstations
Total Bacterial Count	Cfu/m3	32	500	

Standardization of Best Practices

Kaizen by Plant Team

Desktop Unplugging Activity

Peripheral light retrofit (250W MHL to 100W LED)

Light Pole Height Optimization

Motion Control Sensor for Wash Room Lighting

UPS Modules capacity Optimization

Lighting Circuit Modification with Switch Color Code

Teamwork, Employee Involvement & Monitoring

	UPS Parameters Checking	$\begin{array}{c c} \hline \\ \hline $	Chiller Parameters checking
Substation feeder load Monitoring via BMS	Substation Parameter Monitoring	FMS Tool Consumption Monitoring	DG Parameters checking
Concision: TO NE NUMPY PLANETITY Image: Distributive PLANETITY Image: Distributive PLANETITY Numm Al. Al.		Nachh Nach Nach Nach Nach Sterg Haugenet Ori - Stater Ori - Stater Ørig Fraid Indig halo State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State St	

Energy Awards

CII Award - Energy Efficient Unit 2017

CII Award - Excellent Energy Efficient Unit

EHS Awards

CII Award - EHS Excellence 2020 5 Star

Sectoral Award - Winners

Major Achievement - COVID Vaccination Drive

Way forward

3 Way Approach

- Utilizing Renewable Energy Wind Energy
- GSM board to control lighting based on CPU On/Off and remote Start / Stop of HVAC
- Rooftop Solar PV Plant

- SDB-1 & SDB-2 Chiller Header Line Integration
- Energy Efficient Chiller Retrofit at SDB-3
- Phase-wise replacement of Inefficient & Conventional Blowers with EC fans @ AHU

22nd National Award for Excellence in Energy Management 2021 Techno Campus Office (TCO) - Chennai

August 2021